SUBJECT INDEX

A. C. impedance study

of Li in sulfur dioxide electrolytes, 37

Ammoniates

influence of water addition on structural and electrochemical behaviour of liquid; study of LiClO₄·4NH₃ ammoniate/H₂O mixtures, 305

Anion behaviour

in polyacetylene cathode for secondary Li battery, 231

Anion diffusion process

analysis of; application of electrochemically formed polypyrrole in Li secondary batteries, 237

Anions

as supporting electrolytes for rechargeable batteries, new, 287

Battery(ies)

Li

in China, research and development, 145

diffusion of Li in TiO₂ cathode of, 127

with fibrous carbon fluoride, discharge characteristics of, 99 future of; round table discussion,

stable electrolytes for, 19 testing techniques for materials used in, 75

Li foils for, study of surface layers on, 265

Li rechargeable

345

new anions as supporting electrolytes for, 287

development of, 3

electrochemical and structural characteristics of Nb(V) oxide in. 193

employing a porous thin film of Cu_{3+δ} Mo₆S_{7.9}, 199

organic electrolyte solutions for, 273

Li secondary

anion behaviour in polyacetylene cathode for, 231

application of electrochemically formed polypyrrole in, analysis of anion diffusion process, 237

electrochemical behaviour of amorphous V₂O₅(-P₂O₅) cathodes for, 173

ethylene carbonate/ether solvents for electrolytes in, 293 fibrous polyaniling as positive

fibrous polyaniline as positive active material in, 249

Li-thionyl chloride, as memory backup power source, characteristics of, 47

materials testing package for, and energy conversion systems, 81 polyaniline/Li, 243

Battery cathode

Li, amorphous chromium oxide, new, 151

Battery performance

effects of additive material CuFeS₂ on Li/CuO, 119

Carbon fluoride

discharge characteristics of Li battery with fibrous, 99

Cathode(s)

amorphous V₂O₅(-P₂O₅), for Li secondary batteries, electrochemical behaviour of, 173

InSe, electron and phonon aspects in Li intercalated, 213

polyacetylene for secondary Li battery, anion behaviour in, 231

TiO₂, of Li battery, diffusion of Li in, 127

Cathode composition

Li-graphitic oxide cells; influence of electrolyte and, 105

Cell(s)

Li, discharge reaction and overpotential of graphite fluoride cathode in nonaqueous, 87

Li/Ag vanadium oxide, heat dissipation from, during storage and lowrate discharge, 179 Li-graphitic oxide, influence of electrolyte and cathode composition, 105

Li-I, with additive in poly(2-vinylpyridine) iodide, long-term discharge characteristics of, 141

Li rechargeable

solvent effects on, 279

vanadium oxides as electrode materials for, 165

vanadium oxides in electrodes for, 157

Li/SOCl₂, in situ micro-Raman study of discharge products of, 69

Chromium oxide

amorphous, new Li battery cathode, 151

Conductivity

structure—, relationship in polymer electrolytes formed by network polymers from poly[dimethylsiloxane-g-poly(ethylene oxide)] and lithium perchlorate, 327

Copper

effects of additive material CuFeS₂ on Li/CuO battery performance, 119

Li/Cu₄O(PO₄)₂ couple; new version for long-life low-rate applications, 111

rechargeable Li battery employing porous thin film of Cu_{3+δ} Mo₆S_{7,9}, 199

Cyclability

of Li electrode, 9

Cycling characteristics

of Li, effect of solvent blending on, 299

Discharge characteristics

of graphite fluoride prepared via graphite oxide, 93

of Li battery with fibrous carbon fluoride, 99

of Li-I cells with additive in poly(2vinylpyridine) iodide, long-term, 141

Discharge products

of Li/SOCl₂ cells, in situ micro-Raman study of, 69

Discharge reaction

and overpotential of graphite fluoride cathode in nonaqueous lithium cell, 87

Diffusion

of Li in TiO₂ cathodes of Li battery, 127

Electrochemical behaviour

of amorphous $V_2O_5(-P_2O_5)$ cathodes for Li secondary batteries, 173

influence of water addition on structural and, of liquid ammoniates; study of LiClO₄·4NH₃ ammoniate/ H₂O mixtures, 305

Electrochemical characteristics

of Nb(V) oxide in rechargeable Li battery, 193

Electrochemical properties

of double-metal nitrides containing Li, preparation and, 311

Electrode(s)

Li, cyclability of, 9

vanadium oxides as, for rechargeable Li cells, 65

Electrode kinetics

in poly(ethylene oxide)-based electrolytes, 333

Electrode materials

vanadium oxides as, for rechargeable Li cells, 165

Electrolyte(s)

new anions as supporting, for rechargeable Li batteries, 287

composite Li, effect of different internal surfaces in, 317

ethylene carbonate/ether solvents for, in Li secondary batteries, 293

Li-graphitic oxide cells; influence of, and cathode composition, 105

Li intercalation materials with organic solvents and molten salts as, at temperatures between 60 and 175 °C, investigation of, 221

poly(ethylene oxide)-based, electrode kinetics in, 333

stable, for lithium batteries, 19

structure-conductivity relationship in polymer, formed by network polymers from poly[dimethylsiloxane-gpoly(ethylene oxide)] and lithium perchlorate, 327

sulfur dioxide, a.c. impedance study of Li in, 37

Electron

and phonon aspects in Li intercalated InSe cathode, 213

Energy conversion systems materials testing package for batteries and, 81

Ethylene carbonate

/ether solvents for electrolytes in Li secondary batteries, 293

Fluoride

discharge reaction and overpotential of graphite fluoride cathode in nonaqueous Li cell, 87

Graphite fluoride

discharge characteristics of, prepared via graphite oxide, 93

Graphite fluoride cathode

in nonaqueous Li cell, discharge reaction and overpotential of, 87

Graphitic oxide

Li-, cells; influence of electrolyte and cathode composition, 105

Heat dissipation

from Li/Ag vanadium oxide cells during storage and low-rate discharge, 179

Impedance analysis

of lithium systems, 135

Indium

Li intercalated InSe cathode, electron and phonon aspects in, 213

Intercalation materials

investigation of Li, with organic solvents and molten salts as electrolytes at temperatures between 60 and 175 °C, 221

Internal surfaces

in composite Li electrolytes, effect of different, 317

Iodine

Li-, cells with additive in poly(2vinylpyridine) iodide, long-term discharge characteristics of, 141 Ionic conduction

in polyether-polyurethane networks containing lithium perchlorate,

mechanism of, 339

Iron

effects of additive material CuFeS₂ on Li/CuO battery performance, 119

nature of oxidizing centres in transition metal phosphorus trisulfides MPS₃ (M = Fe, Ni), 205

Lithium

/Ag vanadium oxide cells, heat dissipation from, during storage and lowrate discharge, 179

/CuO battery performance, effects of additive material CuFeS₂ on, 119

/Cu₄O(PO₄)₂ couple; new version for long-life low-rate applications, 111

cycling characteristics of, effect of solvent blending on, 299

double-metal nitrides containing, preparation and electrochemical properties of, 311

graphite fluoride cathode in nonaqueous Li cell, discharge reaction and overpotential of, 87

 graphitic oxide cells; influence of electrolyte and cathode composition, 105

 I cells with additive in poly(2-vinylpyridine) iodide, long-term discharge characteristics of, 141

influence of water addition on structural and electrochemical behaviour of liquid ammoniates; study of LiClO₄·4NH₃ ammoniate/H₂O mixtures, 305

insertion of, into vanadium molybdenum oxides, 187

intercalated InSe cathode, electron and phonon aspects in, 213

intercalation materials with organic solvents and molten salts as electrolytes at temperatures between 60 and 175 °C, investigation of, 221

properties of LiCl layers formed on Li in various SOCl₂ solutions, 53

reduction of voltage delay in Li/SOCl₂ system; study of polymers with chlorine substituent groups as delay reducing additives, 61

/SO₂ cells, studies of high reliability long-life, 27

/SOCl₂ cells, discharge products of, in situ micro-Raman study of, 69

in sulfur dioxide electrolytes, a.c. impedance study of, 37

-thionyl chloride battery as memory back-up power source, characteristics of, 47

Lithium battery(ies)

in China, research and development of, 145

diffusion of Li in TiO₂ cathode of, 127

discharge characteristics of, with	in polymer electrolytes formed by
fibrous carbon fluoride, 99	network polymers from poly[di-
the future of, round table discussion,	methylsiloxane-g-poly(ethylene
345	oxide)] and, 327
polyaniline/, 243	Lithium systems
rechargeable	impedance analysis of, 135
new anions as supporting electro-	
lytes for, 287	Memory back-up power source
development of, 3	characteristics of Li-thionyl chloride
employing porous thin film of	battery as, 47
$Cu_{3+\delta}Mo_6S_{7,9}$, 199	Metal nitrides
Nb(V) oxide in, electrochemical	double-, containing Li, preparation
and structural characteristics	and electrochemical properties of,
of, 193	311
organic electrolyte solutions for,	
273	Molybdenum
secondary	insertion of Li into vanadium, oxides,
anion behaviour in polyacetylene	187
cathode for, 231	rechargeable Li battery employing
application of electrochemically	porous thin film of $Cu_{3+\delta}Mo_6S_{7.9}$,
formed polypyrrole in, analysis	199
of anion diffusion process, 237	
electrochemical behaviour of amor-	Nickel
phous $V_2O_5(-P_2O_5)$ cathodes	nature of oxidizing centres in transi-
for, 173	tion metal phosphorus trisulfides
ethylene carbonate/ether solvents	$MPS_3(M = Fe, Ni), 205$
·	Niobium(V) oxide
for electrolytes in, 293	in rechargeable Li battery, electro-
fibrous polyaniline as positive	chemical and structural character-
active material in, 249	istics of, 193
stable electrolytes for, 19	
testing techniques for materials used	Nitrides
in, 75	double-metal, containing Li, prepara-
Lithium battery cathode	tion and electrochemical properties
amorphous chromium oxide, new,	of, 311
151	
Lithium cell(s)	Organic electrolyte solutions
solvent effects on rechargeable, 279	for rechargeable Li batteries, 273
vanadium oxides for rechargeable	Organic solvents
as electrode materials, 165	and molten salts as electrolytes at
in electrodes, 157	temperatures between 60 and
Lithium electrode(s)	175 °C, investigation of Li inter-
cyclability of, 9	calation materials with, 221
properties of passivating film on sur-	Oxidizing centres
face of, 259	in transition metal phosphorus tri-
Lithium electrolytes	sulfides MPS ₃ (M = Fe, Ni), nature
effect of different internal surfaces	of, 205
in composite, 317	01, 203
Lithium foils	
for batteries, study of surface layers	Passivating film
on, 265	on surface of Li electrodes, properties
Lithium perchlorate	of, 259
polyether-polyurethane networks	Phosphorus
containing, mechanism of ionic	amorphous $V_2O_5(-P_2O_5)$ cathodes
conduction in, 339	for Li secondary batteries, electro-
structure-conductivity relationship	chemical behaviour of, 173

Li/Cu₄O(PO₄)₂ couple; new version for long-life low-rate applications, 111

Polyacetylene

cathode for secondary Li battery, anion behaviour in, 231

Polyaniline

fibrous, as positive active material in Li secondary batteries, 249 /Li battery, 243

Poly[dimethylsiloxane-g-poly(ethylene oxide)]

structure-conductivity relationship in polymer electrolytes formed by network polymers from, and lithium perchlorate, 327

Polyether

 polyurethane networks containing lithium perchlorate, mechanism of ionic conduction in, 339

Poly(ethylene oxide)

-bsed electrolytes, electrode kinetics in, 333

Polypyrrole

application of electrochemically formed, in Li secondary batteries, analysis of anion diffusion process, 237

Polyurethane

polyether-, networks containing lithium perchlorate, mechanism of ionic conduction in, 339

Poly(2-vinylpyridine) iodide

Li-I cells with additive in, long-term discharge characteristics of, 141

Positive active material

fibrous polyaniline as, in Li secondary batteries, 249

Reliability

studies of high, long-life Li/SO₂ cells, 27

Selenium

Li intercalated InSe cathode, electron and phonon aspects in, 213

Silver

Li/Ag vanadium oxide cells, heat dissipation from, during storage and low-rate discharge, 179

Solvent blending

effect of, on cycling characteristics of Li, 299 Solvent effects

on rechargeable Li cells, 279

Structural characteristics

of Nb(V) oxide in rechargeable Li battery, 193

Structure

-conductivity relationship in polymer electrolytes formed by network polymers from poly[dimethylsiloxane-g-poly(ethylene oxide)] and lithium perchlorate, 327

Sulfur

discharge products of Li/SOCl₂ cells, in situ micro-Raman study of, 69 effects of additive material CuFeS₂ on Li/CuO battery performance, 119

long-life Li/SO₂ cells, studies of high reliability, 27

properties of LiCl layers formed on Li in various SOCl₂ solutions, 53

rechargeable Li battery employing porous thin film of Cu_{3+δ} Mo₆S_{7,9}, 199

reduction of voltage delay in Li/SOCl₂ system; study of polymers with chlorine substituent groups as delay reducing additives, 61

Sulfur dioxide

electrolytes, a.c. impedance study of Li in, 37

Testing package

materials, for batteries and energy conversion systems, 81

Testing techniques

for materials used in Li batteries,

Thionyl chloride

characteristics of Li-, battery as memory back-up power source, 47

Titanium

diffusion of Li in TiO₂ cathode of Li battery, 127

Transition metal phosphorus trisulfides nature of oxidizing centres in MPS₃
(M = Fe, Ni), 205

Vanadium oxides

amorphous V₂O₅(-P₂O₅) cathodes for Li secondary batteries, electrochemical behaviour of, 173 Li/Ag, cells, heat dissipation from, during storage and low-rate discharge, 179 Mo, insertion of Li into, 187 for rechargeable Li cells as electrode materials, 165 in electrodes, 157

Voltage delay

in Li/SOCl₂ system, reduction of; study of polymers with chlorine

substituent groups as delay reducing additives, 61

Water addition

influence of, on structural and electrochemical behaviour of liquid ammoniates; study of LiClO₄. 4NH₃ ammoniate/H₂O mixtures, 305